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ABSTRACT

Most ecosystems on the earth, except deep-sea thgdmal vent environments [1], are

sustained by solar energy from the sun. The prinmogucers including plants and algae
utilize solar energy to produce carbohydrates thinophotosynthetic activity. Since plant

growth and development are highly affected by anttiemperature, temperature beyond the
growth optimum, either higher or lower, potentiatigrms plants by acting as environmental
stressors.

In certain plants and also in coral-algal symbiaystems, only a few degrees increase in
temperature causes growth inhibition and sometiines lethal. However, its fundamental
mechanism for the action of heat stress on plants algae remains yet obscure. In the
context of global warming, the issue has becomeenmaportant than before because many
endemic species may go extinction due to elevatelient temperature. Coral bleaching
phenomenon, which can be ascribed to disrupticthefsymbiotic photosynthesis due to an
increase in sea surface temperature (SST), iskweWn as an impact of global warming.

Many studies have suggested that high SST is armajese for mass-scale bleaching events
and it leads to a degradation of coral-reef ecesystvia mass mortality of reef-building
corals. A recent model predicts more than a 1 ¥eimse in SST during the next half century,
a situation that may result in disastrous corahdiéng on a regional as well as global scale.
A heat-sensitive coral species that may be clodedal extinction would be placed under
greater threat by global climate change. Until ntdge however, there have been a limited
number of reports available on interspecies diffeesin bleaching tolerance. The absence of
measurable indicators for the bleaching toleranae avdifficulty in research.

To explore species-difference in bleaching toleeasample and reliable measures are needed
for comparisons. Applying PAM chlorophwlfluorescence technique, we have demonstrated
that recovery potential of photosystem Il (PSlipimotosynthesis is an important determinant
for bleaching tolerance in corals. Figure 1 showsmparison of the recovery rates of three
coral species under different temperatures. Altholitjle effect on recovery is observed
among them up to 28°C, species-specific differefmxome evident above 30°C [2]. This
new parameter shows a good agreement with ecolagiearvations.

It has been suggested thRabcillopora damicornis and Stylophora pistillata are typical
bleaching-susceptible species that show high nigrtainder high SST conditions.
Investigating a large number of corals, McClanahetnal. (2004) reported a clear
species-dependence in bleaching-susceptibility muodtality in GBR and Kenyan reefs.
These reports have provided the essential infoomath inter-species difference in bleaching
tolerance but did not account for intra-speciefediihces that have sometimes been observed
in the field. Thus, exploration of such intra-spacdifferences is also required to find out a
practical way for preventing local extinctions dedching-susceptible species. We have
shown substantial evidence that water-flow fad#isathe survival of bleaching-susceptible



corals under high SST conditions and reduces phatade of photosynthesis under strong
light conditions, observations implying the invaiwent of water-flow effects in the
intra-species as well as the inter-species diffe¥arf bleaching tolerance [3, 4].

In this talk | will present an overview of coralelblching studies on a mechanistic aspect.
Based on recent findings [5-7], some implicatidmest should be taken into the consideration
for the conservation of coral reefs will be disads
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Figure 1. Temperature dependence of the recovery of dampgetbsystem Il (PSII) in
coral species. Open circlécropora digitifera; closed circle,Pavona decussata; closed
square3ylophora pistillata. Redrawn from [2].
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