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EXTENDED ABSTRACT

The growing desire for autonomy in unmanned masystems is driven by several trends,
including increased complexity in mission objecsiv@nd duration, increased capability in

on-board sensor processing and computing poweraarigcrease in the number of users and
owners of unmanned vehicles. The MOOS-IVP projeari Open Source project designed
and developed in this context. It is an implemaotadf an autonomous helm and substantial
support applications that aims to provide a capablenomy system out of the box. It also

has an architecture, software policy, documentatsord support network that allows this

newer generation of scientists, with newer vehiged mission ambitions, to be nimble to

build innovative autonomy algorithms to augmenteaisting set of capabilities. This paper

describes the MOOS-IVP autonomy architecture affivace structure, and describes how
groups of vehicles, each with different sensor@ic@ssing power and communications
capabilities, may be combined together to form stettautonomy architecture with identical

core autonomy software running on each platform.

MOOS-IvP is comprised of two distinct Open Sourcivsare projects. The Mission Oriented

Operating Suite (MOOS) is a product of the MobilebBtics Group at the University of

Oxford, and provides core middleware capabilitrea publish-subscribe architecture, as well
as several applications ubiquitous in unmannedrmaaiebotic and land robotic applications
using MOOS. Additional MOOS applications, includitige IvP Helm, are available in the

MOOS-IVP project. IvP stands for Interval Programgniand refers to the multi-objective

optimization method used by the IvP Helm for adiitrg between competing behaviors in its
behavior-based architecture.

The MOOS-IVP software is available on the web vi@rggmous read-only access, [3]. It
consists of more than 120,000 lines of C++, conmpyigbout 30 distinct applications and
over a dozen vehicle behaviors. It represents aBOutvork years of effort or more from
individual contributors. Autonomy configurationsdamissions in this environment have been
tested in several thousands of hours of simulatiod several hundred hours of in-water
experiments, on platforms including the Bluefinigth UUV, the Hydroid REMUS-100 and
REMUS-600 UUVs, the Ocean Server Iver2 UUV, the d@cdexplorer 21-inch UUV,
autonomous kayaks from Robotic Marine Systems g/ SInc, and two larger USVs from
the NATO Underwater Research Center in La Spealg. It



1.1 Trendsin Unmanned Marine Vehicles Relating to Autonomy

The algorithms and software described in this pap&ve their genesis in unmanned
underwater vehicles. Unlike unmanned sea-surfaeng and aerial vehicles, underwater
vehicles cannot be remotely controlled; they muakendecisions autonomously due to the
low bandwidth in acoustic communications. Remotetiad, or teleoperation, in land, air, or
surface vehicles may be viewed as a means to albmservative, risk-averse operation with
respect to the degree of autonomy afforded to #fdcle. In underwater vehicles, similar
conservative tendencies are realized by scriptiegvehicle missions to be as predictable as
possible. Missions typical of early model UUVs weremprised of a pre-planned set of
waypoints accompanied with depth and perhaps speegimeters. The on-board sensors
merely collected data which was then analyzed dftervehicle was recovered from the
water.

Advances in sensor technologies include greatealsbipes, at lower cost, lower size and
lower power consumption. The same is true for thdd@ard computing components needed
to process sensor data. Increasingly underwatecleshare able to see, hear and localize
objects and other vehicles in their environment quitkly analyze an array of qualities in
water samples taken while underway. Likewise, thalable mission duration at-depth has
grown longer due to improvements in inertial natima systems, which have become
cheaper, smaller and more accurate, and due t@vmprents in platform battery life. Each of
these trends has contributed to making a UUV owess satisfied with simply collecting the
data and analyzing the results in a post-missi@byars phase. The information and analysis
are available in-stride, in situ, why not act oattimformation in-stride to the advantage of the
mission objectives? Enter adaptive autonomy.

The chart in Figure 1 below conveys a rough time-knd relationship between the evolution
of UUV autonomy capabilities and the evolution dher critical UUV technologies. The
notion of adaptive in adaptive autonomy is a stidatale, and refers to the ability to allow
increasing degrees of sensor information to affestride autonomy decisions. On one end
of the scale, even a vehicle that deterministiclipws a set of waypoints may be adapting
its heading decisions based on an INS or GPS sersarever, sensors that are capable of
perceiving qualities about the vehicle’s environmencluding water quality, bottom type,
artifacts, and other moving vehicles, are ablelter ahe flow of autonomy decisions in a
much more profound manner.

The notion of collaboration in collaborative automomay be viewed as a sliding scale as
well. At one end of the spectrum are vehicles dggdoalongside each other, executing a
mission independently but each contributing toiatjmission. In this case, the collaboration
occurs in the pre-deployment mission planning meceWhen at least periodic
communication between deployed vehicles is feasiblghole different kind of collaboration
is possible, especially when each vehicle is abkedapt components of its mission to both its
sensed environment and incoming communications fiaimer vehicles. Advances in
underwater acoustic communications (ACOMMS) in ®wh reliability, range, flexibility in
defining message sets, and bandwidth, have enathled development of adaptive,
collaborative autonomy [14, 15]. This trend als@ws in the context of declining cost and
size of commercially available UUVs, making it pbss for even medium-sized
organizations to own and operate several vehicles.

The MOOS-IVP autonomy architecture has been deedl@nd refined in this context of
migration to adaptive, collaborative autonomy. Nissstructure is less defined in terms of a
sequence of tasks, but rather as a set of automoodes with conditions, events and field
commands defining the transitions between modes. Mbdes correlate to a set of one or
more active behaviors, where each behavior may tbeown substantial autonomy
sub-component. An autonomy system that includesatsity to adapt its mission to the



environment, other collaborating vehicles, andqaicd messages from within a field-control
hierarchy will inevitably need to balance competiogjectives in a way that reflects a
singular mission focus. This paper also discussesrhulti-objective optimization is used at
the behavior coordination level in the helm to agkithis design objective.
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Figure 1.UUV Technologies and Autonomy: A rough time-line and relationship between
UUV autonomy and other critical UUV technologiesitiCal components include (a) the
platform itself in terms of reliability, cost, amhdurance, (b) on-board computing power and
sensor processing, (¢) on-board sensors in termesofution, size, and cost, and (d) acoustic
communications (ACOMMS). Each of these maturinghtetogy trends affects what is
possible and desired from the on-board autonomyesysThe corresponding trend in
autonomy is from deterministic vehicles acting ipeledently, toward adaptive vehicles
acting in collaboration.

1.2 The Backseat Driver Design Philosophy

The main idea in the backseat driver paradigm esseparation between vehicle control and
vehicle autonomy. The vehicle control system rums @latform’s main vehicle computer and

the autonomy system runs on a separate payloadutemphis separation is also referred to
as the mission controller - vehicle controller ifdee. A primary benefit is the decoupling of

the platform autonomy system from the actual vehighrdware. The vehicle manufacturer
provides a navigation and control system capabktreming vehicle position and trajectory

information to the payload computer, and accepéirgiream of autonomy decisions such as
heading, speed and depth in return. Exactly howdiécle navigates and implements control
is largely unspecified to the autonomy system mgrin the payload. The relationship is

depicted in Figure 2.

The autonomy system on the payload computer censita set of distinct processes
communicating through a publish-subscribe databaled the MOOSDB (Mission Oriented
Operating Suite - Database). One such process iistemfiace to the main vehicle computer,
and another key process is the IvP Helm implemgritie behavior-based autonomy system.
The MOOS community is referred to as the “largetoaamy” system, or the “autonomy
system as a whole” since MOOS itself is middlewaard actual autonomous decision
making, sensor processing, contact managementagécimplemented as individual MOOS
processes.
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Figure 2.The backseat driver paradigm: The key idea is the separation of vehicle autonomy
from vehicle control. The autonomy system provideading, speed and depth commands to
the vehicle control system. The vehicle controltesys executes the control and passes
navigation information, e.g., position, heading aspked, to the autonomy system. The
backseat paradigm is agnostic regarding how thenaunty system implemented, but in this
figure the MOOS-IVP autonomy architecture is deguict

1.3 The Publish-Subscribe Middleware Design Philosophy and MOOS

MOOS provides a middleware capability based on ghblish-subscribe architecture and
protocol. Each process communicates with each akimeugh a single database process in a
star topology (Figure 3). The interface of a paitc process is described by what messages it
produces (publications) and what messages it comsusubscriptions). Each message is a
simple variable-value pair where the values aretditchto either string or numerical values
such as (STATE, “DEPLQOY"), or (NAV_SPEED, 2.2).imhiting the message type reduces
the compile dependencies between modules, andtdtesl debugging since all messages are
human readable.
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Figure 3:A MOOS community: is a collection of MOOS applications typically ning on a
single machine each with a separate process Ih pacess communicates through a single
MOOS database process (the MOOSDB) in a publiskesili® manner. Each process may be
executing its inner-loop at a frequency independeath one another and set by the user.
Processes may be all run on the same computestobdied across a network.



The key idea with respect to facilitating code se-uis that applications are largely
independent, defined only by their interface, ang application is easily replaceable with an
improved version with a matching interface. SinceOD®5 Core and many common
applications are publicly available along with smicode under an Open Source GPL license,
a user may develop an improved module by alterkigfiag source code and introduce a new
version under a different name. The term MOOS Cefers to (a) the MOOSDB application,
and (b) the MOQOS Application superclass that eaclividual MOOS application inherits
from to allow connectivity to a running MOOSDB. Hotg the MOOS Core part of the
codebase constant between MOOS developers enab&spltg-and-play nature of
applications.

1.4 The Behavior-Based Control Design Philosophy and IvP Helm

The IvP Helm runs as a single MOOS application ases a behavior-based architecture for
implementing autonomy. Behaviors are distinct safevmodules that can be described as
selfcontained mini expert systems dedicated toricpéar aspect of overall vehicle autonomy.
The helm implementation and each behavior impleatem exposes an interface for

configuration by the user for a particular set désions. This configuration often contains

particulars such as a certain set of waypoints,chearea, vehicle speed, and so on. It also
contains a specification of mission modes that rdetee which behaviors are active under

what situations, and how states are transitionedemmultiple behaviors are active and

competing for influence of the vehicle, the IvPv&olis used to reconcile the behaviors
(Figure 4).
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Figure 4:The IvP Helm: The helm is a single MOOS application running las process
pHelmlIvP. It is a behaviorbased architecture whiseeprimary output of a behavior on each
iteration is an IvP objective function. The IvPs®l performs multi-objective optimization on
the set of functions to find the single best vehiattion, which is then published to the
MOOSDB. The functions are built and the set is edlwn each iteration of the helm —
typically one to four times per second. Only a sl behaviors are active at any given time
depending on the vehicle situation, and the stadeesconfiguration provided by the user.



The solver performs this coordination by soliciteug objective function, i.e., utility function,
from each behavior defined over the vehicle denisipace, e.g., possible settings for heading,
speed and depth. In the IvP Helm, the objectivestians are of a certain type - piecewise
linearly defined - and are called IvP Functionse Bolver algorithms exploit this construct to
find a rapid solution to the optimization problenonmrised of the weighted sum of
contributing functions.

The concept of a behavior-based architecture snoéttributed to [5]. Since then various
solutions to the issue of action selection, ilee, issue of coordinating competing behaviors,
have been put forth and implemented in physicatesys. The simplest approach is to
prioritize behaviors in a way that the highest ptyobehavior locks out all others as in the
Subsumption Architecture in [5]. Another approashréferred to as the potential fields, or
vector summation approach (See [1], [7]) which ad#is the average action between
multiple behaviors to be a reasonable compromibesd& action-selection approaches have
been used with reasonable effectiveness on a yasfeplatforms, including indoor robots,
e.g., [1], [2], [9], [11], land vehicles, e.g., [12&nd marine vehicles, e.qg., [4], [6], [8], [13],
[16]. However, action-selection via the identificat of a single highest priority behavior and
via vector summation have well known shortcomirager described in [9], [11] and [12] in
which the authors advocated for the use of mulgedive optimization as a more suitable,
although more computationally expensive, methodaftiion-selection. The IvP model is a
method for implementing multi-objective function deal action-selection that is
computationally viable in the IvP Helm implemendati

1.5 The Nested Autonomy Paradigm

For large scale ocean monitoring and observatistesys, no single unmanned platform has
the ability in terms of sensing, endurance and camaoations to achieve large scale, long
endurance system objectives. Even if multiple plats are applied to the problem,
effectiveness may be substantially diminishednifited to a single platforrtype. The nested
autonomy paradigm, depicted in Figure 5, is an approachmtplementing a system of
unmanned platforms for large scale autonomous sggplications. It is based in part on the
objective of making seamless use of heterogenedatonn types using a uniform
platform-independent autonomy architecture. It @ssumes the platforms will have varying
communications bandwidth, connectivity and latency.

The vertical connectivity allows information to pass from sasst the on-board sensor
processing and autonomy modules, or from each tmad¢her nodes in the cluster, or up to
the field operator, and thus forms the basis fer dbitonomousdaptive control which is a
key to the capability in compensating for the saradlensor apertures of the distributed nodes.
Similarly, thehorizontal connectivity forms the basis faollaboration between sensors on a
node (sensor fusion) or between nodes (collab@ @tigcessing and control).

The three layers of horizontal communication haastly different bandwidths, ranging from
100 byte/min for the inter-node acoustic modem comgations (ACOMMS) to 100
Mbyte/sec for the on-board systems. Equally impdrtdne layers of the vertical connectivity
differ significantly in latency and intermittencyanging from virtually instantaneous
connectivity of the on-board sensors and controt@sses to latencies of 10-30 minutes for
information flowing to and from the field controlperators. This, in turn, has critical
implication to the time scales of the adaptivitydasollaborative sensing and control. Thus,
adaptive control of the network assets with therafoe in-the-loop is at best possible on
hourly to daily basis, allowing the field operatormake tactical deployment decisions for the
network assets based on e.g. environmental foe@asd reports of interfering shipping
distributions, etc. Shorter time scale adaptivitych as autonomously reacting to episodic
environmental events or a node tracking a marinenmmal acoustically must clearly be



performed without operator intervention. On theeothand, the operator can still play a role
in cuing forward assets in the path of the dynamienomenon, using the limited

communication capacity, taking advantage of his @perational experience and intuition.

Therefore, as much as a centralized control pamadgnfeasible for such systems, it is also
unlikely that a concept of operations based emtiogl nodal autonomy is optimal. Instead,
some combination will likely be optimal, but in weof the severe latency of the vertical
communication channels, theested autonomy concept of operations described is heavily
tilted towards autonomy.

The MOOS-IVP autonomy implementation discussedis paper is situated primary at the
node level in the nested autonomy structure depitcteFigure 5. However, aspects of the
MOOS-IVP architecture are relevant to the largetupe as well. A key enabling factor to the
nested autonomy paradigm is the platform indeperelefn the node level autonomy system.
The backseat driver design allows the decouplinthefvehicle platform from the autonomy
system to achieve platform independence. The MO@fsllaware architecture and the IvP
Helm behavior-based architecture also contributplétform independence by allowing an
autonomy system to be comprised of modules thatsesappable across platform types.
Furthermore, collaborative and nested autonomy é&twnodes is facilitated by the simple
modal interface to the on-board autonomy missioreontrol behavior activations.
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Figure 5:The Nested Autonomy Paradigm: Field control operators receive intermittent
information from field nodes as connectivity andhthaidth allow. Elements of clusters may
serve a heterogeneous role as a gateway commuamgadigent. Likewise, nodes receive
intermittent commands and cues from field operatNiede autonomy compensates for and
complements the sporadic connectivity to field colrind other nodes in a cluster or network
of clusters.

References

[1] Ronald C. Arkin. Motor Schema Based Navigationddobile Robot: An Approach to
Programming by Behavior. IRroceedings of the IEEE Conference on Robotics and

Automation, pages 264-271, Raleigh, NC, 1987.

Ronald C. Arkin, William M. Carter, and Douglas Mackenzie. Active Avoidance:
Escape and Dodging Behaviors for Reactive Contntérnational Journal of Pattern

[2]



[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Recognition and Artificial Intelligence, 5(1):175— 192, 1993.

Mike Benjamin, Henrik Schmidt, and John J. Leonhtth://www.moos-ivp.org

Andrew A. Bennet and John J. Leonard. A Behaviasdgia Approach to Adaptive
Feature Detection and Following with Autonomous &lneater Vehicles EEE Journal
of Oceanic Engineering, 25(2):213-226, April 2000.

Rodney A. Brooks. A Robust Layered Control Systean & Mobile Robot.|EEE
Journal of Robotics and Automation, RA-2(1):14-23, April 1986.

Marc Carreras, J. Batlle, and Pere Ridao. Rea@iwetrol of an AUV Using Motor
Schemas. Irinternational Conference on Quality Control, Automation and Robotics,
Cluj Napoca, Rumania, May 2000.

Oussama Khatib. Real-Time Obstacle Avoidance fonipldators and Mobile Robots.
In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 500-505, St. Louis, MO, 1985.

Ratnesh Kumar and James A. Stover. A Behavior-Bagelligent Control Architecture
with Application to Coordination of Multiple Undeater Vehicles|EEE Transactions
on Systems, Man, and Cybernetics - Part A: Cybernetics, 30(6):767—784, November
2001.

Paolo PirjanianMultiple Objective Action Selection and Behavior Fusion. PhD thesis,
Aalborg University, 1998.

Kanna Rajan, Frederic Py, Conor McGann, John Rffam, O’Reilly, Thom Maughan,
and Brent Roman. Onboard Adaptive Control of AU¥&g Automated Planning and
Execution. In International Symposium on Unmanned Untethered Submersible
Technology (UUST), Durham, NH, August 2009.

Jukka Riekki.Reactive Task Execution of a Mobile Robot. PhD thesis, Oulu University,
1999.

Julio K. RosenblattDAMN: A Distributed Architecture for Mobile Navigation. PhD
thesis, Carnegie Mellon University, Pittsburgh, B897.

Julio K. Rosenblatt, Stefan B. Williams, and Hughriant-Whyte. Behavior-Based
Control for Autonomous Underwater Exploratidnternational Journal of Information
Sciences, 145(1-2):69-87, 2002.

Toby Schneider and Henrik Schmidt. The Dynamic CachpControl Language: A
Compact Marshalling Scheme for Acoustic Communiceti In Proceedings of the
I|EEE Oceans Conference 2010, Sydney, Australia, May 2010.

Toby Schneider and Henrik Schmidt. Unified Command Control for Heterogeneous
Marine Sensing Networkdournal of Field Roboatics, In Press, 2010.

Stefan B. Williams, Paul Newman, Gamini Dissanaydk#io K. Rosenblatt, and Hugh
Durrant-Whyte. A decoupled, distributed AUV contasthitecture. IiProceedings of
31st International Symposium on Robotics, pages 246—-251, Montreal, Canada, 2000.



TR FRAN e RS R LS
GNP L BPBEN P 2 BH

Henrik Schmidt and Arjuna Balasuriya
Department of Mechanical Engineering
Laboratory for Autonomous Marine Sensing Systems
Massachusetts Institute of Technology
Cambridge, MA 02139
henrik@mit.edu

Michael R. Benjamin
Naval Undersea Warfare Center
Newport RI, 02841
Department of Mechanical Engineering
Computer Science and Artificial Intelligence Laltorg
Massachusetts Institute of Technology
Cambridge, MA 02139
michael.r.benjamin@navy.mil

# &

FHIARRRAHE AR PRSP AP AL RAARI DT R R REBDRENEY
g fedidt § ~ 450 B R BACLA 4 SE M onil B30 R R AR K i
gﬁﬁﬁoram%ﬂﬁuﬁﬁ%a%wiPJ?%mfﬁﬂ@ﬁﬁﬁﬁ%%?ﬁ%%
N TEhE  EXx G ANHEEF I AR ANERFHRGT R ETET
AL TSR R SRR ¢ SR R g R
LATA PP E BT f Bl > FITRSHAITO LFE A LRI RG ks
Falke AP HERP TR FRL e gﬁ%@%mﬁPJmﬁﬁiﬁﬁﬁw#ﬁ
A At e ie B i A bR B Bad@ iy 4 MR MM eh ﬁ;\ Haelks ’ﬁf#

BE AT o PREPCp A FHOEGR RN LS

FE R - TR EsET2E  Ed S B2 B2RE L 2 redmo
Nzi+foFFire & | 4 Mobile RObO'[ICSﬁ:]ﬁ]L_i—/ ST R p) ARt R
STRER kRGP AP 0 h - AR pERREAg pRREY Y
- Rk AN Tgw * rleZ»%rav;}'ﬁElFi # e lEiEedkive v R 2
sﬁ e TRFRI e-EanEr TR | 25 mFn T RFRINCE - VP &
L TRERY - T RFREEE fLrléﬂ* P EPREGEE Y KA
B S R A -

TR AL - EHE o Hire e G AR ERE L NS BT ovad 50 k457
[B] -7 # z 120,0007] 12+ cv CH+h 4ol » # 35 30/ % o g * 4258 0 2 L 548
PR v RAFS U R AE 20 £ 0 1 RS % o A BRA
Tnp e R R SR ] ORI RS AT | ek R R E
& ¢ 3 Bluefin 2 7 ¢021+4 & 4 -k T §4 £ +Hydroid 2 # ¢ REMUS-1008 REMUS-600
Lok T {8~ Ocean Servep: 7 shlver2 & 4 -k T & - Ocean Explorer: # 121 v
Aok 4%~ Robotic Marme,, B P8 SARA 2 7 injg A dEdEo 1R K A PSR
AL T ek TET Y e ) G M Aka g L5 .

E)

E)



